It is the struct that treats the modular arithmetic. All the remaining parts of AC Library works without modint, so you don't necessarily read this to use the remaining parts.
For most of the problems, it is sufficient to use modint998244353
, modint1000000007
, or modint
, which can be used as follows.
#include <atcoder/modint>
#include <iostream>
using namespace std;
using namespace atcoder;
using mint = modint998244353;
// or: typedef modint998244353 mint;
int main() {
// print sum of array (mod 998244353)
int n;
cin >> n;
mint sum = 0;
for (int i = 0; i < n; i++) {
int x;
cin >> x;
sum += x;
}
cout << sum.val() << endl;
}
If the mod is not fixed, you can use modint
as follows.
#include <atcoder/modint>
#include <iostream>
using namespace std;
using namespace atcoder;
using mint = modint;
// or: typedef modint mint;
int main() {
// print sum of array (input mod)
int n, mod;
cin >> n >> mod;
mint::set_mod(mod);
mint sum = 0;
for (int i = 0; i < n; i++) {
int x;
cin >> x;
sum += x;
}
cout << sum.val() << endl;
}
All the functions except set_mod
work for all three of them.
(1) modint x()
(2) modint x<T>(T y)
T
(int, char, ull, bool, ...
). y
is stored in modint after taking mod.void modint::set_mod(int m)
It sets the mod. It must be called first.
Constraints
Complexity
int modint::mod()
It returns the mod.
int x.val();
It returns the value that is stored in x
.
The following operations work.
-modint;
modint++;
modint--;
++modint;
--modint;
modint + modint;
modint - modint;
modint * modint;
modint / modint;
modint += modint;
modint -= modint;
modint *= modint;
modint /= modint;
modint == modint;
modint != modint;
The following also works, because it is interpreted as modint(1) + x
.
modint x = 10;
1 + x;
The following also works, because it is interpreted as y * modint(z)
.
modint::set_mod(11);
modint y = 10;
int z = 1234;
y * z;
Constraints
gcd(b.val(), mod) == 1
should be satisfied when evaluating a / b
(or a /= b
).Complexity
modint x.pow(ll n)
It returns $x^n$.
Constraints
Complexity
modint x.inv()
It returns $y$ with $xy \equiv 1$.
Constraints
gcd(x.val(), mod) = 1
Complexity
modint modint::raw(int x)
It returns modint(x)
without taking mod. It is the function for constant-factor speedup.
For example, the following code works even if i
is greater than or equal to mod, because mod is automatically taken.
modint a;
int i;
a += i;
However, in the following code, it is ensured that i
is less than mod.
int main() {
modint::set_mod(1000000007);
modint a = 1;
for (int i = 1; i < 100000; i++) {
a += i;
}
}
In such a situation, we can decrease the number of mod operations as follows.
int main() {
modint::set_mod(1000000007);
modint a = 1;
for (int i = 1; i < 100000; i++) {
a += modint::raw(i);
}
}
When the value more than or equal to mod is assigned to modint::raw(x)
, the behavior is undefined.
Constraints
You can use the other fixed mod like 1000000009
as follows.
using mint = static_modint<1000000009>;
modint998244353
(resp. modint1000000007
) is the alias of static_modint<998244353>
(resp. static_modint<1000000007>
).
using modint998244353 = static_modint<998244353>;
using modint1000000007 = static_modint<1000000007>;
You can use multiple mods as follows.
using mint0 = dynamic_modint<0>;
using mint1 = dynamic_modint<1>;
modint
is the alias of dynamic_modint<-1>
.
using modint = dynamic_modint<-1>;